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D-Lattices 
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Difference lattices (D-lattices), which generalize Boolean algebras, orthomodular 
lattices as well as MV algebras, are studied. 

1. I N T R O D U C T I O N  

In 1992, a new algebraic structure of fuzzy sets, a D-poset  o f  f u z z y  sets 
(K6pka, 1992), was introduced. A difference operation is a primary notion 
in this structure. 

By the transfer of the properties of a difference of fuzzy sets on an 
arbitrary partially ordered set we obtained a new mathematical model, a D- 
poset  (K6pka and Chovanec, 1994), which generalizes orthoalgebras (Foulis 
et al., 1992), orthomodular posets (PtS& and Pulmannovfi, 1991), the set of 
all effects (Dvure~enskij and Pulmannov~i, 1994), as well as MV algebras 
(Chang, 1959) and Boolean algebras (Sikorski, 1964). 

In this paper, we introduce D-lattices (i.e., D-posets which are simultane- 
ously lattices) and we give a characterization of orthomodular lattices, Bool- 
ean algebras, and MV algebras in a difference poset setup. 

2. D-POSETS AND D-LATTICES 

Let (~,  <-) be a nonempty partially ordered set (poset). A partial binary 
operation \ is called a difference on ~ ,  if an element b \ a  is defined in ~ if 
and only if a -< b, and the following conditions are satisfied: 

(D1) I f a - - - b ,  t h e n b \ a  <-b.  
(D2) Ira--< b, t h e n b \ ( b \ a )  = a. 
(D3) I f a - b - < c ,  t h e n c \ b < -  c \ a  and ( c \ a ) \ ( c \ b )  = b \a .  
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A structure ( ~ ,  -<, \ )  is cal led a pose t  with a difference. Moreover ,  if  ~ is 
a lattice, we say that ( ~ ,  A, v,  \ )  is a lattice with a difference. 

We shall write ~ instead of  ( ~ ,  -<, \ )  or ( ~ ,  A, V, \ ) .  
It  is easy to see that the set- theoretic difference o f  subsets of  a nonempty  

set and the usual difference o f  nonnegat ive  real numbers  fulfil l  the condi-  

tions ( D I ) - ( D 3 ) .  

Example  2.1. Let ~ = {x0, xl . . . . .  xn . . . .  } be an infini te countable 
chain such that x0 < x~ < . . .  < x,, < . . . .  n ~ N. We put 

x~ \xj  : = xk_j for k, j e { 0 , 1 , 2  . . . .  }, j <- k 

Then �9 is a lat t ice with a difference.  

Proposit ion 2.2 (K6pka  and Chovanec,  1994). Let  ~ be a poset  with a 
difference and a, b, c, d e ~ .  The  fo l lowing assert ions are true: 

(i) I f  a - b -< c, then b \ a  <-- c \ a  and ( c \ a ) \ ( b \ a )  = c \b .  
(ii) I f  b --- c and a <- c \b ,  then b <- c \ a  and ( c \ b ) \ a  = ( c \ a ) \ b .  

(iii) I f  a --- b --- c, then a <- c \ ( b \ a )  and ( c \ ( b \ a ) ) \ a  = c \b .  
(iv) I f  a -< c and b -< c, t h e n c \ a  = c \ b  i f  and only i f  a = b. 
(v) I f  d e ~/', d -< a <-- c, d -< b -< c, then c \ a  = b \ d  if  and only if  

c \ b  = a \d .  

Proposit ion 2.3. Let  ~ be a poset  with a d i f ference and a, b, c e ~ ,  
a - - -  c , b - < c .  I f a v b  E ~ , t h e n ( c \ a )  A ( c \ b )  E ~ and 

c \ (a  v b) = (c \a)  A (c \b)  

Proo f  From the inequali t ies  a --< a v b -< c and b --< a v b --  c and 
(D3) we have c \ (a  v b) <-- c \ a  and c \ (a  v b) <- c \b .  Let w c ~ ,  w <-- c \a ,  
w <- c \b .  Then a = c \ ( c \ a )  <- c \w ,  b = c \ ( c \ b )  <- c \w;  therefore,  a v b 
<- c \ w  <- c and so w = c \ ( c \ w )  <-- c \ (a  v b), which impl ies  that the e lement  
c \ (a  v b) is the greatest  lower  bound of  the set {c \a ,  c \ b } .  �9 

Simi lar ly  we can prove the fo l lowing proposi t ion.  

Proposit ion 2.4. Let  ~ be a lat t ice with a difference and a, b, c E ~ ,  
a - - -  c , b - - < c .  Then 

c \ (a  A b) = (c \a)  v ( c \b )  

Corollary 2.5. Let ~P be a latt ice with a difference and a, b e ~ .  Then 

(a v b ) \ ( a  A b) = ((a v b ) \a )  v ((a v b ) \b )  

Proposit ion 2.6. Let  ~ be a latt ice with a difference and a, b, c ~ ~ ,  
c --< a, c -< b. Then 



D-Lattices 1299 

(a A b ) \ c  = (a \c )  A (b \c) .  

Proo f  Calculate 

(a A b ) \ c  = ((a v b ) \ c ) \ ( ( a  v b ) \ (a  A b)) = 

= ((a v b ) \ c ) \ ( ( ( a  v b ) \a )  v ((a v b ) \b ) )  

= (((a v b ) \ c ) \ ( ( a  v b ) \a) )  A (((a v b ) \ c ) \ ( ( a  v b ) \b) )  

= (a \c )  A (b\c) .  �9 

I f  the greatest  e lement  1~ exists in a poset  (a lattice) 3 '  with a difference, 
then 3" is called a D-poset  (a D-lattice). 

In K6pka  and Chovanec  (1994) it was  shown that every orthoalgebra, 
every or thomodular  poset, and the set of  all effects are D-posets .  A Boolean 
algebra, an or thomodular  lattice, and an M V  algebra are D-lattices. 

It is clear that the e lement  1~\ 1~ is the least e lement  in 3" and we denote 
it by 0~. 

Proposit ion 2.7 (K6pka  and Chovanec,  1994). Let 3" be a D-poset.  Then: 

(i) a \ 0 ~  = a for all a E P. 
(ii) a \ a  = 0 ~ f o r a l l a  ~ P. 

(iii) I f a ,  b ~ P , a -  b, t h e n b \ a  = 0~ if and only if b = a. 
(iv) I f a ,  b ~ P , a - < b ,  t h e n b \ a  = b i f  and only i f  a = 0~. 

Proposit ion 2.8. Let 3" be a D-poset.  I f  a v b ~ 3", then ((a v b) \a )  ^ 
((a v b ) \b )  E 3" and 

((a v b ) \a )  A ((a v b ) \b )  = O~ 

Proo f  It suffices to put c = a v b in Corollary 2.5. �9 

Proposit ion 2.9. Let 3'  be a D-lattice, a, b, c ~ 3", c -- a, c --< b. Then 

(a v b ) \ c  = (a \c )  v (b \c )  

Proo f  I t  is evident  that (a \c )  v (b \c )  <<- (a v b ) \ c .  Calculate 

((a v b ) \ c ) \ ( ( a \ c )  v (b \c ) )  

= (((a v b ) \ c ) \ ( a \ c ) )  A (((a v b ) \ c ) \ ( b \ c ) )  

= ((a v b ) \a )  A ((a v b ) \b )  = O~ 

and by (iii) in Proposit ion 2.7 we have (a v b ) \ c  = (a \c )  v (b \c) .  �9 

Let 3" be a D-lattice. Then we can define a (total) binary operation O 
on 3" by the formula  

b G a :=  b \ (a  A b) (2.1) 
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It is easy to prove that 
properties: 

(i) I f a - - - b ,  t h e n b @ a  = b\a. 
(ii) b G a < - b f o r a n y a ,  b ~ .  

(iii) b G ( b O a )  = a A b .  
(iv) Ifb-----a,  t h e n b G a  = 0 ~ .  
(v) a A b  = O ~ i f a n d o n l y i f b O a  = b. 

the binary operation 0 has the following 

Example 2.10. In Mundici (1986) an MV algebra is defined as follows: 
An MV algebra is an algebra (~ ,  @, (3, *, 0, 1), where ~ / i s  a nonempty 
set, 0 and 1 are constant elements of ~ ,  @ and @ are binary operations, and 
* is a unary operation, satisfying the following axioms: 

(A1) ( a @ b )  = ( b @ a ) .  
(A2) ( a @ b ) @ c  = a O ( b O c ) .  
(A3) a O 0  = a. 
(A4) a O  1 = 1. 
(A5) (a*)* = a. 
(A6) 0* = 1. 
(A7) a O a *  = 1. 
(A8) ( a * O b ) * O b  = ( a O b * ) *  O a .  
(A9) a ( 3 b  = ( a * G b * ) * .  

The lattice operations v and A are defined by the formulas 

a v b  = ( a ( 3 b * ) Q b  and a / x b  = ( a G b * ) ( 3 b  

We write a --- b iff a v b = b. The relation <- is a partial ordering over 
and 0 <- a --- 1, for every a ~ ~ .  An MV algebra is a distributive lattice 
with respect to the operations v, /x .  I f  we put 

b \ a : =  ( a O b * ) *  for a - - b  

then we obtain that an MV algebra is a D-poset, more exactly a distributive 
D-lattice. In Chovanec (1993) it is proved that 

b O a := b\(a A b) = b (3 a * f o r any  a, b ~ ~ 

Theorem 2.11. A D-lattice ~/' is an MV algebra if and only if 

( w O u )  G v = ( w O v ) G u  for any u , v , w ~  

Proof Let ~ be an MV algebra. Then the formula (2.2) follows from 
the commutativity and the associativity of  the operation (3. 

Now let ~ be a D-lattice with the property (2.2). We put 

a* := l ~ a = l \a fo rany  a ~ '  

It is evident that * is an involution [axiom (A5)], an anti-isotonous operation 
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on ~ ,  and 0* = 1 [axiom (A6)]. Further, we define binary operations Q and 
| as follows: 

a Q b : = a O b *  

a O b : =  ( a * O b ) *  

If  we put w = 1, u = a*, v = b* in (2.2), then 

a @ b  = a O b *  = (1 O a * ) O b *  = (1 O b * ) O a *  = b o a *  = b Q a  

Therefore Q is a commutative operation and dually G is also commutative 
[axiom (A1)]. Similarly Q and �9 are associative operations [axiom (A2)]. 
Calculate 

a �9 0 = (a* O 0)* = (a*i0)* = (a*)* = a 

a @  1 = ( a * O  1)* = 0* = 1 

a �9 a* = (a* O a*)* = (a* ia*)*  = O* = 1 

which proves the validity of axioms (A3), (A4), and (A7). Finally we prove 
axiom (A8). It is clear that b O (b O a) = a A b = a O (a O b). Then 

a �9 (a �9 b*)* = (a* (2) (a @ b*))* = (a* O (a* O b*))* 

= (b* O (b* O a*))* = (b* Q) (b �9 a*))* 

= b O ( b Q a * ) *  �9 

Corollary 2.12. An orthomodular lattice is a Boolean algebra if and only 
if the formula (2.5) holds for every trinity of elements from an orthomodu- 
lar lattice. 

Example  2.13. (a) Every finite chain is an MV algebra. Indeed, if ~ = 
{x0, xl . . . . .  xn}, n ~ N, is a chain such that x0 < xj < . . .  < xn, then a 
difference i on % is uniquely defined (see also Rie~anovgt and Brgel, 1994) by 

x~ixj := xk-] for k , j  E {0, 1, 2 . . . . .  n}, j -<k 

The chain ~ is a distributive D-lattice with the least element x0 and the 
greatest element xn. It is easy to verify that the binary operation O on 
defined by the formula (2.1) has the property (2.2). 

(b) Let (qJ, +)  be an ordered Abelian group and e E N, e > 0. Then 
the set (the interval) ~310,e I = {a ~ ~: 0 --< a --< e} is an MV algebra. 

(c) Let ~ =  {0, 1, a, b, c, d, e} be a system which arose from two chains 
{0, b, a, 1} and {0, e, d, c, 1}. If  we put l i a  = b, l i b  = a, a i b  = b, l i e  
= c, l i c =  e, l l d = d , c \ d =  e , c \ e  = d ,  d i e  = e ,  x iO = x ,  a n d x \ x = O  
for any x ~ c~, then ~ is a D-lattice, which is not an MV algebra. Indeed, 
(1 O c )  O a  = e \ ( e A a )  = e a n d ( 1  O a )  O c  = b i ( b / x c )  = b. 
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